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Abstract
In the context of the semiclassical theory of short periodic orbits, scar functions
play a crucial role. These wavefunctions live in the neighbourhood of
the trajectories, resembling the hyperbolic structure of the phase space in
their immediate vicinity. This property makes them extremely suitable for
investigating chaotic eigenfunctions. On the other hand, for all practical
purposes reductions to Poincaré sections become essential. Here we give
a detailed explanation of resonance and scar function construction in the
Bunimovich stadium billiard and the corresponding reduction to the boundary.
Moreover, we develop a method that takes into account the departure of the
unstable and stable manifolds from the linear regime. This new feature extends
the validity of the expressions.

PACS numbers: 05.45.Mt, 03.65.Sq, 45.05.+x

1. Introduction

During the past few years, research carried out on chaotic eigenfunctions has provided
very important results. Berry and Voros [1, 2] conjectured that, in the semiclassical limit,
these eigenfunctions would be locally similar to random superpositions of plane waves; this
conjecture is supported by theorems of Shnirelman [3] and Colin de Verdière [4]. But Heller
[5] found that a large number of highly excited eigenfunctions of the Bunimovich stadium
billiard [6] have density enhancements along the shortest periodic orbits (POs). Since then
several studies have focused on these phenomena and led to theoretical developments [7]
and experimental observations such as in macroscopic billiard-shaped microwave cavities [8],
tunnel junctions [9] and hydrogen atoms in strong magnetic fields [10, 11].

Recently, a variety of new approaches to study the structure of chaotic eigenfunctions has
been developed [12–15]. One of them consists of the semiclassical construction of resonances
with hyperbolic structure associated with unstable periodic orbits [15]. These resonances were
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studied both analytically and numerically. They are classically motivated constructions that
take into account complete classical information in the neighbourhood of a PO. The so-called
scar functions, as they have been named, can be obtained by a linear combination of resonances
[16, 17] of a periodic orbit at a given energy by requiring minimum energy dispersion.
Resonances span a basis and are obtained by applying a creation operator over a vacuum
state. The vacuum state (i.e. a resonance with no transverse excitations) is constructed with
a (conveniently selected) transverse Gaussian wave packet that follows a modified transverse
motion along the chosen orbit. The modified motion, which is the result of dropping the pure
hyperbolic one, describes a bunch of POs surrounding the chosen trajectory. For instance, the
eigenvectors of the monodromy matrix evolve without the exponential contraction–dilation
that is expected in this kind of hyperbolic dynamics. Instead, after one period they return
to themselves (up to a minus sign in some cases). In the same way, the wave packet
returns to itself with an accumulated phase that is an integral multiple of 2π , guaranteeing its
continuity.

Billiards are among the most interesting and well-studied systems in quantum chaos. We
are going to work with the Bunimovich stadium billiard. For billiards, the boundary is the
natural Poincaré section. We present a formulation of resonances and scar functions over
the boundary. This reduction makes the calculations easier and it is a clear advantage when
exploring a great number of eigenfunctions. Of course this is not the only reason to obtain
these scar function expressions, since they are more than the tools for investigating numerically
the structure of chaotic eigenfunctions. They are the cornerstone of the semiclassical theory
of short periodic orbits of [16, 17]. In this context it is possible to obtain all quantum
information on a chaotic Hamiltonian system just by knowing classical information on a small
number of short POs (in fact, the shortest ones, whose number increases at most linearly with
the Heisenberg time). This is accomplished by evaluating the interaction between POs. In
previous calculations [17] only vacuum states of a handful of the shortest POs were used. For
higher energies it is necessary to incorporate excitations into these vacuum states and also
longer POs. All this can be done by using scar functions associated with a greater number of
POs than those needed at low energy values. It is evident that working on the billiard domain
will not be the best choice in these cases, and expressions on the boundary become essential.
Hence, we need to develop an efficient method to evaluate them, this being one of the main
goals of this paper.

We also go further by taking into account the nonlinear behaviour of the unstable and
stable manifolds. Then, we are able to extend the validity of scar functions beyond the linear
regime. The chosen approach is general in nature, and despite being applied to the special
case of the Bunimovich stadium it can be extended to general systems in a straightforward
way. These new ingredients do not significantly alter the construction of scar functions, which
preserve their compact character.

This paper is organized as follows. Section 2 consists of a detailed explanation of
the construction of resonances on the billiard domain. Here we address many subtleties
involved in the wavefunction calculations and local expressions are provided. Moreover, a
comprehensive approach is offered for resonances including vacuum states and excitations
in a single formulation. Though the construction may seem complex the great advantage is
that it is a general one, suitable for any billiard. In section 3 the construction is extended
with expressions on the boundary. In this part explicit formulae amenable to extensive and
high energies calculations are presented. Also a brief summary of the results from the
previous section and their application to the construction of scar functions on the billiard
boundary are developed; here, we give explicit examples. Finally, section 4 is devoted to
conclusions.
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2. Resonances on the billiard domain

In this section we give a thorough explanation of the construction of the resonances associated
with a given trajectory γ of length L belonging to the Bunimovich stadium. It is worth
mentioning that, in spite of the general expressions being valid for any kind of orbit, details
(like F0 and G0 values to be defined later) will be explained taking into account that the orbit
is a libration in the desymmetrised stadium. We define a coordinate x along the trajectory and
a coordinate y perpendicular to it (such that y = 0 defines the orbit). The evolution of an
initial displacement (y, py) at x = 0 into (y(x), py(x)) at x can be obtained by means of the
symplectic stability matrix M(x) with elements mij ,(

y(x)

py(x)

)
=

(
m11(x) m12(x)

m21(x) m22(x)

) (
y

py

)
.

The eigenvectors ξu and ξs of M give the unstable and stable directions associated with the
orbit. These vectors evolve as ξ̃u(x) = M(x)ξu. After one period they return over themselves,
ξ̃u(L) = (−1)µ eλLξu and ξ̃s(L) = (−1)µ e−λLξs , where µ is the total number of half turns
made by ξ̃u(x) and ξ̃s(x) during their evolution along the orbit. For a billiard this number
corresponds to µ = ν + Nref where ν is the maximum number of conjugated points (in
particular, for the stadium ν is exactly the number of bounces with the circle). Nref is the total
number of reflections with the billiard boundary and the symmetry lines. This point will be
addressed later when we refer to quantization conditions.

We are going to decompose the motion given by M(x) into a purely hyperbolic and a
periodic one. In order to do so we need to specify the contraction–dilation rate along the
manifolds. This can be done by first finding one of the x0 points on the trajectory where the
projections of ξu(x0) and ξs(x0) on y and py are equal in absolute value, i.e. the unstable and
stable directions would be symmetrical with respect to the axes. There are 2ν such points on
the orbit. They can be found by using the fact that Mx0 (the return map starting at x = x0)
has equal diagonal elements when this condition on the eigenvectors is met. By means of the
relationMx0 = M(x0)M(L)M(x0)

−1 this condition can be easily implemented.
In the case of librations any turning point can be taken as x0, satisfying this condition.

Then, we decompose M(x) into a periodic matrix F(x) describing the evolution of the
manifolds and a matrix which is responsible for the contraction–dilation along them. This is
just an application of the Floquet theorem [18]:

M(x) = F(x) exp[f (x)λK] (1)

where K ≡ BDB−1 with D a diagonal matrix of elements d11 = 1 and d22 = −1 and
B = (ξuξs), i.e. the symplectic matrix transforming coordinates from the new axes ξu and ξs
to the old ones y and py . The real function f (x) (required to fulfil f (0) = 0 and f (L) = L)
can be seen as the relation between the lengths of ξ̃u(x) and ξu, but the plane y–py has no
defined norm, so establishing this relation is in general impossible. Further conditions can be
imposed on f (x), (see [15]). However, without loss of generality, we are going to consider
the easier choice f (x) = x for the present calculations. On the other hand, the neutral
motion given by F(x) can be obtained by its action on ξu and ξs , allowing us to define the set
yu(x), ys(x), pu(x) and ps(x) of periodic functions:(

yu(x)

pu(x)

)
≡ ξu(x) ≡ F(x)ξu = e−f (x)λM(x)ξu (2)

and (
ys(x)

ps(x)

)
≡ ξs(x) ≡ F(x)ξs = ef (x)λM(x)ξs. (3)



7968 G G Carlo et al

Since F(x) is area preserving, these functions satisfy the symplectic property
yu(x)ps(x) − ys(x)pu(x) = ξu(x) ∧ ξs(x) = ξu ∧ ξs = J (J being the unit of action in
the y–py plane).

The simplest resonance can essentially be seen as the product of a plane wave in the
x direction, being the semiclassical approximation for the unidimensional motion along the
orbit, and a Gaussian wave packet in the transverse coordinate, which follows a dynamics
without dilation–contraction along the unstable and stable manifolds of the trajectory. The
vacuum state (semiclassically normalized to unity) is given by [15]

ψ(0)γ (x, y) = exp{i[S(x) + y2�(x)/2]/h̄− iφ(x)/2}√
T ẋ [π(h̄/J )|Q(x)|2]1/4

(4)

where T is the period of the orbit and φ(x) is the angle swept by Q(x) while evolving from
0 to x. In this expression �(x) = P(x)/Q(x), where Q(x) and P(x) are the components of
a complex vector constructed with the stable and unstable manifolds. These components are
obtained as (

Q(x) = yu(x) + iys(x)
P (x) = pu(x) + ips(x)

)
≡ ξu(x) + iξs(x) = M(x)B

(
e−f (x)λ

i ef (x)λ

)
. (5)

For billiards we take a slightly modified evolution matrix (M̃(x)) in order to have a
continuous Q(x); since the phase φ(x) of Q(x) must be known in detail for resonance
construction, continuity is a very reasonable condition to ask for. This can be done by means
of M̃(x) ≡ (−1)N(x)M(x), with N(x) being the number of reflections while evolving from 0
to x. In turn, this matrix can be constructed by using two types of matrices:

M1(l) =
(

1 l

0 1

)
and M2(θ) =

(
1 0

−2/ cos(θ) 1

)
.

M1(l) describes the evolution for a path of length l without bounces with the circle (the
transverse momentum is measured in units of the momentum along the trajectory). M2(θ)

takes into account a bounce with the circle (θ defines the angle between the incoming trajectory
and the radial direction). In the following we assume M̃(x) instead of the original given for
the most general expressions in the previous theoretical introduction. The reflections-related
phase will be included in the expressions directly.

Taking the wavefunctions defined in equation (4) as the vacuum state for appropriate
creation–annihilation operators (see [15]), the following expression results for a resonance
with m transverse excitations:

ψ(m)γ (x, y) = e−imφ(x)

√
2mm!

Hm

[
y
√
J/h̄

|Q(x)|
]
ψ(0)γ (x, y) (6)

where φ(x) is the phase introduced in equation (4), and Hm(z) are the Hermite polynomials
(H0 = 1,H1 = 2ξ,H2 = 4ξ2 − 2, . . .). It is easy to see that ψ(m)γ is also a product of two
functions; the solution for the motion along the orbit and m excitations of a transverse Gaussian
wave packet which evolves following the same periodic motion as previously mentioned.

Inside each family, resonances are identified by the integer number n = 0, 1, . . . , the
number of excitations along the orbit, and by m = 0, 1, . . . , the transverse excitations. The
wave number k depends on γ, n and m through the rule

S(L)/h̄−Nbπ/2 − (m + 1/2)µπ = 2πn (7)

which guarantees the continuity of ψ(m)γ at x = L = 0. In this expression S(L) = ∫ L
0 px dx

is the dynamical action and µ is the topological phase, that is the number of half turns made
by the manifolds along the orbit. Finally, Nb is a pure quantum phase related to the boundary
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conditions (see [15]), which is equal to the number of reflections satisfying Dirichlet boundary
conditions minus the number of reflections satisfying Neumann conditions.

For the desymmetrized stadium billiard we have

S(L)/h̄ = Lk Nb = Ns + shNh + svNv

andµ = Nref +ν withNref = Ns +Nh +Nv whereNs,Nh andNv are the number of reflections
with the stadium boundary and the horizontal and vertical symmetry lines, respectively.
Finally, ν is the number of bounces with the quarter of the circle. The value of sh is 0 or
1 depending on the symmetry with respect to the horizontal axis being even or odd; this is
equivalent for sv , where the vertical symmetry is considered. The set of allowed m values can
range from 0 or 1 (depending on mµ being even or odd) to m < Aeff/2πh̄ (where Aeff is the
transverse area in which the construction is valid). For simplicity, we are going to consider
0(1) � m < n as a satisfactory criterion.

The time-reversal properties of the system under study can be applied to equation (6),
giving a real resonance expression. Resonances are constructed explicitly for the stadium
billiard by assigning a semiclassical expression to each straight line of the orbit. The first
one of these lines is the segment of γ that begins at x1 = 0. Let x2 (>x1) be the value of
x where the path reaches the border of the stadium after the corresponding evolution. The
path departing from x2 defines the second line and so on until x = L/2 is reached. If
we define local coordinates (x(j), y(j)) over each line in such a way that x(j) = x is inside the
desymmetrized billiard, the expression for the j th line turns out to be (we are going to use
(x, y) in the following expressions, assuming that they represent the variables (x(j), y(j)) of
the j th line)

ψ
(m)
j (x, y) =

(
kR

|Q(x)|2
)1/4

f (m)

[√
kRy

|Q(x)|

]
2√
L

sin[ky2gj (x) + kx

−Nb
(
x+
j

)
π/2 − (m + 1/2)
j(x)− F0 −mG0]. (8)

Here Nb
(
x+
j

)
is defined in the same way as Nb but taking account of the bounces up to and

including the point xj , the corresponding term takes into account the quantum phase associated
with boundary conditions and this is the resonance counterpart of the phase considered in the
quantization conditions. Furthermore,

gj (x) ≡ Re[�(x)/2] = yupu + ysps
2

(
y2
u + y2

s

) (9)

where the x dependence is understood. We would like to point out that the factor k in the term
ky2gj (x) in equation (8) is different from the factor 1/h̄ in equation (4). This is due to the fact
that the momenta in the expression for gj (x) are measured in units of h̄k, i.e. the momentum
along the trajectory. The oscillator functions are defined by

f (m)(ξ) = π−1/4(2mm!)−1/2 e−ξ 2/2Hm(ξ)

whereHm is the mth degree Hermite polynomial. The sine function in equation (8) was chosen
in order to obtain real resonances by virtue of the time-reversal symmetry of the system. We
have taken T ẋ = L in equation (4) and considered J = h̄kR in equation (6), with k being
the wave number from the quantization conditions and R the circle radius of the stadium.
Construction of 
j(x) will be explained in section 2.1.

The initial phase of the resonances ψ(m)j , equation (8), is essential to satisfy the boundary
conditions. We have set ϕ̃1 = 0 in the relations that define ϕ̃j , and account for the initial phase
by means of two quantities, F0 and G0, which take values as shown in figure 1. F0 accounts
for the initial phase in order to obtain an even (odd) function when symmetry is even (odd),
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π/2

F

G
0

π/2

0

0

0

Figure 1. F0 andG0 values depending on the type of starting point and on the boundary conditions.
Dashed (solid) lines correspond to the symmetrical (antisymmetrical) condition, i.e. sh, sv = 0 (1).
Finally, arrows stand for the trajectories.

without considering the symmetry of the oscillator functions (this will be addressed by G0).
Considering the case of only one path at the initial bounce, such as in the first diagrams for
both rows, the corresponding function must obey the symmetry by itself. In the second case
of the first row the symmetry-related path is added but multiplied by −1 (see the final sum in
this section and explanation thereby). Finally, in the two remaining cases (of the second row)
an even function is needed since the function obtained by adding the symmetry-related path
multiplied by −1 (1) is (anti)symmetric. G0 takes into account the symmetry of the Hermite
polynomials, which goes as m, the number of transverse excitations. Its value depends on
the starting angle of the trajectory. If this angle is zero, the symmetry of the resonance is
that given by the F0 choice. Otherwise, the symmetry of the oscillator function (i.e. Hermite
polynomials) comes into play and in order to have the right final result we need to consider it.
This can easily be accomplished by the choice of the G0 value according to figure 1.

The transformation of local coordinates (x(j), y(j)) over the j line to (X, Y ) coordinates
that belong to the horizontal and vertical directions, respectively, can be obtained in a simple
way by means of a usual transformation. If (Xj , Yj ) are the coordinates of the point xj , and
αj is the angle between the j line and the horizontal direction, (x(j) − xj , y

(j)) = Gj(X, Y )

is given by

Gj(X, Y ) = (X −Xj , Y − Yj )

(
cos(αj ) − sin(αj )
sin(αj ) cos(αj )

)
.

Finally, the family of resonances ψ(m)γ is constructed by means of all the lines including
symmetries (see figure 2 where this procedure is illustrated for one of the shortest periodic
orbits of the stadium billiard), this avoids unnecessary evaluation of reflection points over the
symmetry lines, considering only those over the boundary:

ψγ (X, Y ) =
∑
j

mh∑
i=1

mv∑
l=1

hivlψj [(xj , 0) +Gj(slX, siY )] (10)

where si ≡ (−1)i+1 and sl ≡ (−1)l+1, hi = [δi,1 + δi,2(1 − 2sh)] and vl = [δl,1 + δl,2(1 − 2sv)].
Here, mh and mv depend on j and are specified as follows: mh = 1 or 2 if the line is
symmetrical or not with respect to the horizontal axis, respectively, and the same for the
number mv for the vertical axis, although mh = 2 and mv = 1 if the line goes through the
origin. This is the only considered choice of the two possible ones (the other is mh = 1 and
mv = 2) such that the right number of lines is included in the case of having symmetry with
respect to the origin.

This construction of resonances allows us to reduce calculations by exploiting the spatial
symmetries of the system. We will explain the role of all these indices and coordinate rotations.
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y X

x

y

x

Y

y(1) x(2)

(2)y

(1)
x

1α

Figure 2. Set of lines including symmetries employed in the construction of resonances associated
with one of the shortest periodic orbits. Different coordinate sets involved in this construction are
shown.

The values of the function ψγ in the general coordinates (X, Y ) in the domain are obtained
from their corresponding ones in local coordinates over each line. This is the reason why in
the case of lines having no symmetry with respect to the axis X or Y,mh andmv adopt the value
2 in such a way that the two symmetry-related lines are included (in the case showing that
symmetry,mh andmv have value 1 and the only line considered is the original one). Then, the
values given to sl and si complete this process by reflecting the corresponding coordinate.
The main point about this mechanism in equation (10) is that when second lines are involved
the boundary conditions at the axes have to be met also. To achieve this result they are added
with positive or negative sign if the symmetry is even (sh or sv equal to 0) or odd (sh or sv equal
to 1). This can be directly verified by replacing i and l by 2 in the formulae for hi and vl , and
also sh and sv by their corresponding values (always referring to the reflected lines). To satisfy
the boundary conditions when a line goes through the origin of (X, Y ), only one reflection
must be considered, this is the reason why this case is treated separately in our general rules
of assignment for the mh and mv values.

Now that we have completed the construction of resonances on the domain of the billiard
it is convenient to introduce the expression for the hyperbolic part of the Hamiltonian applied
to these functions. As shown in [15] it has a simple form in terms of conveniently defined
creation–annihilation operators and can also be expressed as

(Ĥ − E)

h̄2/2M
ψ(m) = −ε(x)

[√
(m + 1)(m + 2)ψ(m+2) +

√
(m− 1)mψ(m−2)

]
(11)

with ε(x) = s 2Mẋ/h̄f ′(x)λ/2 = skf ′(x)λ (where f ′(x) = 1, s is the sign of the slope of
the unstable direction with respect to the y axis at the initial point x = x0, and M the mass of
the particle). The casem = 0 corresponds to the expression given in [16]. This formula or its
version on the boundary (see section 3), is the cornerstone of the short periodic orbit theory
and also plays a crucial role in the construction of scar functions.

2.1. Following the phase of Q(x): a local expression for resonances

The main purpose here is to explain the details of the construction of function 
j(x)

first appearing in equation (8). 
j(x) = Nref
(
x+
j

)
π + [ϕ̃j + φj (x) + ρj (x)], with ϕ̃j =
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ϕ̃j−1 + φj−1(xj ) + ρj−1(xj ) for j � 2 and ϕ̃1 = 0, follows the actual phase of Q(x). In the
first term of this expression we introduce the jumps in the sign of Q(x) due to reflections on
hard walls and the symmetry lines, that were avoided by using the M̃(x)matrix instead of the
right one. In fact, this is the only place where this change is needed because � keeps its sign.

We now focus on the remaining term of this function, i.e. ϕ̃j +φj(x)+ρj(x). The function
φj(x) = arg[Qj(x)] − arg[Qj(xj )], where arg takes the argument of a complex number in
the interval [0; 2π), follows the phase of Q(x) after the bounce in xj . We must be careful in
the analysis because the phase of Qj(x) is divided by 2. Then, the proposed method will be
to consider the phase of Qj(x) at an arbitrary point of the line j . The complex vectorsQ(x)
and P(x) are obtained by(

Qj(x)

Pj (x)

)
= M1(x − xj )

(
aj bj

cj dj

) (
e−(x−xj )λ

i e(x−xj )λ

)
where (

aj bj

cj dj

)
= M̃

(
x+
j

)
B

(
e−xjλ 0

0 exj λ

)
=

(
yu(xj ) ys(xj )

pu(xj ) ps(xj )

)
.

Here x+
j means (for j � 2) that M̃ (the stability matrix multiplied by (−1)Nb(x

+
j )) is evaluated

after the bounce over the boundary in xj . It can easily be verified that

Qj(x) = [aj + (x − xj )cj ] exp[−λ(x − xj )] + i[bj + (x − xj )dj ] exp[λ(x − xj )]. (12)

The first conclusion that we can derive from this expression is that for x → −∞,Q(x)

is real, with sign equal to sgn(−cj ), and for x → +∞ is pure imaginary, with its sign
given by sgn(dj ). We will define the new variable as x̃ = x − xj . With this definition
we can easily write Qj(x̃) = (aj + x̃cj ) exp(−λx̃) + i(bj + x̃dj ) exp(λx̃). We are going to
divide the x̃ axis, keeping in mind the places where the real and imaginary parts of Q(x̃)
change signs. These are located at x̃Re = −aj/cj for the real part and at x̃Im = −bj/dj
for the imaginary one. It is easy to see that Q(x̃Re) is pure imaginary with sign given
by sgn[(bjcj − ajdj )/cj ] = sgn(−1/cj ) = sgn(−cj ). On the other hand, Q(x̃Im) is real
and sgnQ(x̃Im) = sgn[(djaj − bjcj )/dj ] = sgn(1/dj) = sgn dj . Moreover, once the
signs of cj and dj are given, the order relation between x̃Re and x̃Im is specified. For
instance, for cj > 0 and dj > 0, and using the fact that ajdj − bjcj = 1, the result is
x̃Re = −aj/cj < −bj/dj = x̃Im.

The only idea that motivates the previous reasoning is the continuous evolution of
Q(x̃), without necessarily being a monotonic one. Hence, we can have four possible sign
combinations and orderings of x̃Re and x̃Im, as shown in figure 3. The same figure also shows
the evolution of Q(x̃) in the complex plane.

In these figures we have labelled the three sectors of the x̃ axis that are defined by x̃Re and
x̃Im with −1, 0 and 1. They are the three quadrants where Q(x̃) time evolution takes place,
evolving from −1 to 0 and then to 1. This labelling can be defined through the function

nj (x̃) =



1 if x̃ > max(−aj/cj ,−bj /dj )
−1 if x̃ < min(−aj/cj ,−bj/dj )

0 otherwise.

Though rather technical, introducingnj allows us to define the resonances in a local form,
and this is a very important feature of them. The curve representing Q(x̃) (in figure 3) is
only qualitative and, of course, it does not imply monotony in the evolution. In the case of
figures corresponding to x̃Re > x̃Im, for instance when dj < 0, the imaginary component of Q
in the −1 region grows while x̃ decreases in absolute value; but at some point it must begin
to decrease in absolute value in order to pass through zero in a continuous way, following
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Figure 3. Detail of the possible evolutions of the complex number Q(x̃). The curves in three out
of the four quadrants depict its time evolution. x̃Re divides the x̃ axis in domains with a positive
or negative value of the real part of Q(x̃). The same applies to x̃Im but for the imaginary part.
Numbers −1, 0 and 1 denote the quadrants visited (in the given order) by Q(x̃).

the signs of the quadrant. Something similar happens in the other cases for both asymptotic
limits. The arrows over the real and imaginary axes in these four schemes representQ(x̃Re) if
they are over the imaginary axis and Q(x̃Im) if they are over the real axis.

Let us again put the analysis in terms of the x variable over the trajectory. Not all the
changes of quadrant imply a jump in the phase of Q(x) given by the arg function. While it is
true that inside each quadrant there is no need of monotony, it is needed among the quadrants
(this is a kind of discrete monotony that allows us to say that the phase of Q(x) is greater
in 1 than in 0, and it is greater in 0 than in −1). Let us suppose now that there has been a
change of region (or quadrant). In the case of x̃ > 0 (there has been an evolution from the
point xj ) but φj(x) < 0 (the phase of Q(x) relative to the one that it had in xj is lower), or
x̃ < 0 and φj (x) > 0 (there has been a backward evolution but the phase grows), we are in a
situation where the real positive axis has been crossed. Thus, we have to add or subtract 2π ,
respectively, in order to continuously keep track of the phase (because if x̃ > 0 there has been
an evolution from xj and the crossing has been in the counterclockwise or positive sense, and
it is negative if x̃ < 0). To summarize, if nj (x) �= nj (xj ) and (x − xj )φj (x) < 0 a phase
ρj (x) = 2πsgn(x − xj ) must be added; otherwise ρj (x) = 0. If cj = 0 or dj = 0, xj can be
replaced by any other point over the j line, inside the desymmetrized billiard.

Finally, we can see that φj(x)+ρj (x) defines the angle swept byQj(x
(j)) in a continuous

way. Hence, ϕ̃j = ϕ̃j−1 + φj−1(xj ) + ρj−1(xj ) for j � 2 prevents the phase from jumping
when changing from one line to the next one.

3. Resonances on the billiard boundary

In section 2 we described the construction of resonances on the billiard domain. This is suitable
for calculations carried out in the low energy region, where these wavefunctions are simple. If
we include longer orbits as well as higher energy families of the shortest ones it is much better
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Figure 4. Incoming and outgoing paths of a given trajectory at a bounce point on the billiard
boundary. Coordinates (xj−1, yj−1) and (xj , yj ) on the trajectory correspond to the incoming and
outgoing paths; t, n are the tangential and normal coordinates to the boundary at the bounce point
A (A is the origin of xj and n). Finally q is the arclength coordinate, with value q = qj at the j th
bounce.

to consider a reduction to a surface of section. Also, for calculations of matrix elements and
for obtaining explicit expressions in terms of classical quantities when h̄ → 0 it is essential
to perform this reduction. As a surface of section we can take any differentiable curve ξ with
a coordinate q along it and another η orthogonal to ξ at the point q (η = 0 over the curve).
Consider an orbit γ , its l crossings with this curve (taken to be at qj (j = 1, . . . , l), with
angles θj on ξ and at xj on γ ) define a number l of mth excited wave packets as the function
ψ(m)γ is considered only over ξ . This is in fact the representation of ψ(m)γ on the section. In
the case of billiards, systems that are bounded by rigid walls, we can take this boundary as the
surface of section, equipped with Birkhoff coordinates, i.e. the boundary arclength q and the
tangential momentum p at the bounce. The origin of q is at the point (X, Y ) = (0, R) and it
grows in the clockwise sense. But for Dirichlet boundary conditions ψγ is null to order

√
h̄

on this surface. Then, we can take

ϕ(m)γ (q) ≡ ∂ψ(m)γ

∂η
(x, y) (13)

as the representation of ψ(m)γ on the section. We are going to obtain the general expression
for this function. In the neighbourhood of a bounce point, ϕ(m)γ is given by the combination
of two terms, one corresponding to the incoming path and the other to the outgoing one (see
figure 4).

From this figure we see that the normal n (the former general η coordinate specialized
for this case) and tangential t coordinates can be related to the trajectory coordinates by
means of simple rotations (being xj = sin(θj )t − cos(θj )n, yj = cos(θj )t + sin(θj )n
and xj−1 = sin(θj )t + cos(θj )n, yj−1 = − cos(θj )t + sin(θj )n). We can consider t �
(q − qj ) − (q − qj )

3/(6R2) for the tangential coordinate, where R is the curvature at the
bounce. Also, for the normal and tangential coordinates to the boundary at the bounce point,
the relation n � −t2/(2R) is valid (over the boundary). For this reason we are going to take
y � cos(θ)t � cos(θ)(q − qj ) and x � sin(θ)(q − qj ) in expressions on the boundary at the
lowest order in h̄. As stated above, we can write the general expression for resonances near
the j th bounce as a sum of two contributions of the type described by equation (6), arising
from the incoming and outgoing paths, respectively. We can write a real expression for the
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Figure 5. Horizontal and vertical symmetry-related bounces and corresponding values of their
Birkhoff coordinates on the stadium boundary.

normal derivative to the lowest order in h̄ (here we recall equation (8)):

ϕ
(m)
j (q) = −k cos θj

(
kR

|Q(xj )|2
)1/4

f (m)(ξ)

× 2√
L

cos[k cos2 θj (q − qj )
2gj (xj ) + k sin θj (q − qj ) +�] (14)

where f (m)(ξ) is the same as defined after equation (8) in section 2, but now taking
ξ = √

kR(q−qj) cos θj/|Q(xj )| and� = kxj −Nb
(
x+
j

)
π/2−(m+1/2)
j(xj )−F0 −mG0.

As previously mentioned, we have evaluated the expression on the boundary by means of the√
h̄ order approximation in the x and y variables, this being a linear approximation in the

boundary variable q. Note that the ordering of bounces and lines is as follows: q1 is the first
bounce on the boundary of the stadium, then j = 1 is the outgoing line from it; this process
extends up to L/2.

We want to obtain expressions for the resonances on the boundary of the first quarter
of the billiard. Symmetry properties must be taken into account and one way to do so is
by considering ‘contributions’ coming from bounces that lie outside the first quarter of the
boundary (see figure 5). The domain counterpart of these bounces is taken into account by
equation (10) of section 2. In fact lines are continued outside the desymmetrized domain.
But regarding boundary expressions we must explicitly introduce them. It is clear that in the
semiclassical limit these contributions will tend to zero, but for finite h̄ we must add to the
previous expressions the same ones but evaluated at q ′

j = −qj ; θ ′
j = −θj when qj �= 0,

and q ′
j = L/2 − qj ; θ ′

j = −θj when qj �= L/4 (see figure 5). Case ‘c’ of figure 5 can be
disregarded.

Then, by adding all the contributions at each bounce along the trajectory we arrive at the
complete expression for the resonance on the boundary. This procedure is analogous to that
devised to construct the resonance on the domain by adding all contributions coming from
different paths.

For completeness we provide the reduction of equation (11) to the boundary

Ĥ effϕ
(m)(q) ≡ ∂

∂n

[
(Ĥ − E)

(h̄2/2M)
ψ(m)

]
ξ

= −skf ′(x)λ
[√
(m + 1)(m + 2)ϕ(m+2) +

√
(m− 1)mϕ(m−2)

]
(15)
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from which we can obtain Hamiltonian matrix elements explicitly. We emphasize that the
reduction to the boundary is meaningful because, as was pointed out in [19], the following
quasi-orthogonality relation between eigenfunctions of billiards exists:∫

ξ

∂φµ

∂n

∂φν

∂n

n · r
2kµkµ

dq � δµ,ν

where kµ and kν are the eigenwave numbers of φµ and φν , respectively (see also [20] for a
further investigation of this relation and [16] for a generalization to Hamiltonian systems).
This relation is valid while |kµ − kν | < L/2A, with L the length of the boundary and A the
area of the domain. Then, it is easy to see that equation (15) induces an effective Hilbert
space on the boundary for wavefunctions localized in the spectrum, that is wavefunctions
living in a sufficiently thin window of the spectrum such that equation (15) works. As was
shown in [15], scar functions satisfy such localization. In conclusion, in order to obtain
eigenfunctions we need to proceed as follows [16, 17]: first, we select a basis of scar functions
living in the energy range we are interested in. We add as many orbits as needed in order to
reach the mean energy density. Finally, by solving a generalized eigenvalue problem we obtain
the eigenenergies and eigenfunctions. We note that this boundary reduction does not imply a
further reduction of the dimension of the eigenvalue problem, as is the case for instance in the
Bogomolny method [21]. In our approach, such a reduction is effectively obtained by using
scar functions.

In the remaining part of this section we introduce corrections to the general expression
for the resonance over the boundary at each bounce. They take into account the curvature of
the manifolds that is not included in the previous linear approximation. Furthermore, they
apply in a direct way to the already defined expressions for the resonances and the hyperbolic
Hamiltonian. We must underline that this approach is heuristic, i.e. we do not attempt to make
a theoretical derivation here.

Equation (14) describes the normal derivative of the resonance on a tangential section to
the boundary at a given bounce point. But this is not enough if we want to make calculations
with these expressions. We therefore need to include the way manifolds depart from the
unstable and stable directions given by the vectors ξu and ξs , respectively. We will denote
the points on the unstable (or the stable) manifold corresponding to the fixed point (q0, p0)

by (q̃, p̃(q̃)) = (q − q0, p − p0). A description of this situation can be seen in figure 6.
In this figure p̃(q̃) is the function that defines the unstable manifold (this procedure applies
equally well to the stable manifold). In the following we drop the subindex labelling the j th
bounce, making the notation easier. In order to proceed we need to change coordinates from
the Birkhoff set to those defined by the unstable and stable directions. This task is done by
the matrix B−1:(

u(q̃)

s(q̃)

)
= B−1

(
q̃

p̃(q̃)

)
where B is the matrix with columns given by the unstable and stable vectors. They are
evaluated at ‘half a bounce’ and projected on the Poincaré section. This can be obtained by
means of (

1/cos θ 0
0 cos θ

) (
1 0

R/cos θ 1

) (
a b

c d

)
where the first matrix projects the vectors on the section and the second matrix stands for
subtracting half a bounce to the third one on the right. In the last case, columns are the
unstable and stable vectors evaluated after the considered bounce (see the previous section for
details).
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Figure 6. Description of point (q̃, p̃(q̃)) = (q − q0, p − p0) on the unstable manifold
corresponding to the fixed point at (q0, p0) on the Poincaré section (q, p).

With these functions at hand it is easy to see that the direction of the chord that
goes through points (q0, p0) and (q̃, p̃(q̃)) is given by the vector ξu + fu(q̃)ξs with
fu(q̃) ≡ s(q̃)/u(q̃) = αuq̃ + βuq̃2 + · · ·. In order to evaluate the effect on the wavefunctions
this description of the manifolds should be averaged, and we propose a heuristic method to do
it. A numerically verified convenient choice turns out to be the following weighted average:

f̄ u(q̃) ≡
∫ q̃

0
fu(q

′)
q̃ ′ dq ′

q̃2/2
= 2

3
αuq̃ +

1

2
βuq̃

2 + · · · . (16)

Of course, this can also be done for the function f̄ s(q̃) which can be expanded in terms of q̃
as

f̄ s (q̃) = 2
3αsq̃ + 1

2βsq̃
2 + · · · (17)

which gives a complete description of these second-order effects. Then, the correction to the
vectors ξu(q̃) and ξs(q̃) is the most direct method to include them in the resonances. The
new vectors now depend on the boundary variable q̃ and must also satisfy the normalization
condition ξu(q̃) ∧ ξs(q̃) = J . In fact, the normalization factor does not play any role in the
wavefunction since, for instance, it cancels out in �(q̃). Therefore, we do not show it in the
following formulae for the q̃-dependent unstable and stable vectors:

ξu(q̃) = (1 + ηf̄ u)[ξu + f̄ u(q̃)ξs ] and ξs(q̃) = (1 + ηf̄ s)[ξs + f̄ s(q̃)ξu] (18)

where η = −sgn(quqs) sin2 θ . The factors (1 + ηf̄ u) and (1 + ηf̄ s) are due to the fact
that, for high values of p, projecting the unstable and stable vectors on the Poincaré section
results in a stretching of these vectors in the q direction and a contraction in p. Then,
when modified to consider nonlinear effects by means of f̄ u(q̃) and f̄ s (q̃), a similar
definition for both vectors is guaranteed by this factor. Finally, the way in which all
these corrections enter the previous expressions is by new versions of Re[P(q̃)/Q(q̃)] and
φ(q̃) expanded in powers of q̃ . It is worth mentioning that these Q and P are different
from those obtained in the previous section, the new ones are on the surface of section.
Then, the final expressions can be obtained by taking into account that now, for instance,
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Figure 7. Some of the shortest periodic orbits of the (desymmetrized) Bunimovich stadium billiard.

Q = (qu + f̄ u(q̃)qs)(1 + ηf̄ u(q̃))+ i(qs + f̄ s(q̃)qu)(1 + ηf̄ s(q̃)) and equivalently for P. Then,
it is easy to see that

g̃(q̃) = Re

(
P

2Q
(q̃)

)
= puqu + psqs

2
(
q2
u + q2

s

) +
gqRq̃

3
(
q2
u + q2

s

)2 + O(q̃2) (19)

with gq = (αu +αs)
(
q2
u − q2

s

)
+ 2(αu− αs)|quqs| sin2 θ , and where the q̃-independent part can

be related to the expression for g(x) given previously (see section 2). In that case expressions
were valid in the domain but here they are given on the boundary (note the different coordinate
dependence). Finally,

φ̃ = φ +
2

3

[(
αsq

2
u − αuq

2
s

)
+ (αu − αs)|quqs| sin2 θ

] q̃

q2
u + q2

s

+ O(q̃2). (20)

Then, the expression for the resonance on the boundary (at each bounce) becomes

ϕ(m)(q̃) = −k cos θ

(
kR

|Q0|2
)1/4

f (m)(ξ)
2√
L

cos[kg̃(q̃)q̃2 + k sin(θ)q̃ + �̃] (21)

with �̃ the same as in equation (14) but taking φ̃ in place of φ in the expression for 
. As
can be seen we have corrected the phase only since the amplitude corrections are not relevant
to this level of approximation. To summarize, we have modified the vectors ξu and ξs in
order to take into account the effect of the curvature of the manifolds in the resonances on the
boundary. Our approach allows us to keep the expressions in their compact fashion.

3.1. Scar function: from the domain to the boundary

Now that we have obtained a basis of resonances expressed on the billiard boundary for a
given trajectory γ and for a quantized energy Eγ (equation (21)), we can translate this to the
scar functions. They are linear combinations of resonances having the form [15]

φγ =
N∑
j=0

cjψ
(4j)
γ

/√∑N

j=0
c2
j (22)
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Figure 8. Linear density and logarithmic contour plots of Husimi distributions for the even scar
functions corresponding to the orbits displayed in figure 7 (numbers below them are the same as
for the orbits). A logarithmic scale of uniform level ratio 1/e from the maximum downwards was
used in the contour plots. Different levels of grey, uniformly distributed, complete this picture.
Solid lines passing through fixed points represent the unstable and stable manifolds. The wave
numbers are the nearest to 1000 allowed by the quantization conditions.

with minimum dispersion σ , where

σ 2 ≡ 〈φγ |(Ĥ − Eγ )
2|φγ 〉 = 〈φγ |Ĥ 2

h |φγ 〉. (23)

The boundary representation only amounts to taking the normal derivative in each term in the
previous sum. Also, the second-order corrections enter immediately through each resonance.
We illustrate this by means of figures 7 and 8, where several examples of short periodic
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Figure 9. Linear density and logarithmic contour plot of the Husimi distribution for the even scar
function in the linear approximation, corresponding to orbit 2 displayed in figure 7. The same
scales and details as in figure 8 have been considered here.
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Figure 10. Linear density plots of the scar functions of figure 8 on the domain of the desymmetrized
stadium billiard.
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orbits and linear density plots of the Husimi distributions of the corresponding scar functions
are displayed. In the latter case the solid lines that pass through each fixed point on the
Poincaré section represent the unstable and stable manifolds. Finally, the relevance of the new
formulation can be appreciated with the aid of figure 9, where the scar function in the linear
approximation can be observed, in this case the one corresponding to orbit 2 (see figure 7 for
reference).

For comparison purposes, we would like to show the scar functions on the domain also.
The same set of orbits is used for constructing them. They can be seen in figure 10.

4. Conclusions

Resonances on periodic orbits form a convenient basis for the investigation of chaotic
eigenfunctions. In this paper we have extended the construction of resonances without
excitations in the Bunimovich stadium billiard domain to resonances with transversal
excitations and also to scar functions. A detailed explanation is given, providing an explicit
local expression for these wavefunctions. We have also extended the construction of
resonances and scar functions from the domain to the boundary of this billiard. This procedure
enables different sorts of applications, the most remarkable being the possibility of extending
calculations of eigenstates (in the context of the semiclassical theory of short periodic orbits
[16, 17]) well above the first low-lying ones. In principle this task could have been carried out
on the domain also, but it would have been very demanding in terms of numerical effort and
practically turns out to be impossible. The construction of resonances and scar functions on
the boundary is one of the main results of this paper.

We have also accounted for the departure of the unstable and stable manifolds from the
linear regime, which is the other important main result of this work. The departure is reflected
in modified expressions for the resonances and scar functions. The developed method is
of general scope and can be applied not only to general systems, but also to any kind of
nonlinear behaviour of the unstable and stable manifolds. This is important to underline,
since the previous construction of resonances was related only to the linear motion around
the trajectories, and its area of approximate validity shrinks as the energy grows. With the
improved but still compact expressions for the resonances and scar functions we are able to
work with a constant effective area.

Moreover, the direct geometrical approach involved in accounting for second-order effects
due to the projection on the boundary Poincaré section makes the expressions extremely
suitable for calculations. A deep exploration of a great number of highly excited eigenfunctions
arises as a realistic possibility due to the improved speed inherent to one-dimensional
calculations. This will allow us to study large sets of eigenfunctions and evaluate statistical
measures.

Finally, with these expressions several integrals made on the domain will turn out to be
one-dimensional Gaussian integrals now, simplifying the theoretical analyses.
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